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Abstract
We investigate the permeability of metamaterials composed of superconducting quantum
interference devices for a microwave probe field and derive the frequency spectrum of
permeability and physical conditions for negative (real part) permeability, which may be
essential to future experimental research on the new kinds of metamaterial. We find that both
the resonance frequency and the permeability of the structure can be smoothly tuned over a
large range via a DC bias field in the sub-hysteresis case, whereas in the hysteresis case
bistability on both permeability and resonance frequency can occur. In addition, negative
permeability at extremely low frequency (much lower than the resonance frequency of LC
oscillation) is possible.

(Some figures in this article are in colour only in the electronic version)

Metamaterials are a new class of electromagnetic materials
which exhibit exotic properties and the response of which
to an EM wave is dictated by a microstructure carefully
engineered on a scale much less than the wavelength. The
most familiar metamaterials are those that have simultaneously
negative permittivity and negative permeability and therefore
have negative refractive index. They are also called left-
handed metamaterials (LHMs), the concept of which was
proposed by Veselago [1] and attracted much attention after
Pendry [2, 3] suggested that they might be fabricated by spit-
ring resonators (SRR), which are for negative permeability,
and direct wires, which are for negative permittivity. The
most familiar and remarkable application of LHMs is for
sub-resolution imaging [4]. In contrast to LHMs, single
negative metamaterials (which have negative permeability
but positive permittivity or vice versa) have also attracted
considerable attention because of their unusual interaction with
electromagnetic waves [5]. Metamaterials can even be applied
to cloaking devices which are possible for use to render objects
located inside invisible to observation from the outside [6].

In contrast to natural materials, which are composed
of atoms or other quantum particles, the unit cells of most
artificial metamaterials are classical particles. Recently we
have proposed a metamaterial whose magnetic resonators,
SRRs, are replaced by superconducting quantum interference
devices (SQUID) and find that negative permeability can be
achieved via quantum transitions between states of electric
current [7]. After this, Lazarides et al [8] show that negative
permeability at some individual frequencies can also be
achieved via classical dynamics of electric current. However,
the frequency spectrum of permeability has not been obtained

and its analysis is limited to the sub-hysteresis case [9]1. In this
paper, we will investigate the SQUID metamaterial being tuned
by a DC bias field including both sub-hysteresis and hysteresis
cases and present the frequency spectrum of permeability for a
microwave probe field.

A scheme for a SQUID metamaterial is shown in figure 1,
where the SQUIDs are arrayed. We assume the metamaterial
is coupled with a weak microwave field, the flux of which shed
on the SQUID ring is much smaller than the flux quantum
and the DC bias magnetic field. For the sake of simplicity we
assume the structure to be two-dimensional, with the geometry
of the SQUID to be a cylindrical ring. The radius of the ring
is denoted by a and the period of the array is denoted by
d . We assume a microwave probe field is interacting with
the composite and its wavelength (λ) satisfies the condition
a � d � λ, in which case the SQUID array can be considered
as an effective medium with permeability μ, while the direct
interaction among the SQUIDs can be neglected. In practice,
we can use the parameters a ∼ 40 μm (the typical SQUID size
is 10–100 μm), d ∼ 400 μm and λ ∼ 4 mm.

In [7] we have investigated the negative permeability
which is generated by the quantum transition between the
energy eigenstates of current in SQUIDs. In this paper,
however, we will show that the negative permeability can
also been generated by the classical dynamics, which is much
simpler than the quantum dynamics and may be much easier to
be realized in practice.

The permeability μ can be given (according to [10]) by
the relation B(ω) = μ0 Hx(ω) + μ0 F H ′(ω), where Hx(ω)

1 The technique of Fourier–Bessel series expansion being utilized in [8] is
only suitable to sub-hysteresis cases, see [9].
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Figure 1. Schematic of a composite metamaterial structure
composed of superconducting rings with Josephson junctions
(SQUIDs) arrayed and placed in a dielectric background. The
permeability for a microwave probe field is tuned by a DC bias field.

is the alternating external magnetic field and H ′(ω) is the
additional magnetic field induced by Hx(ω), which determines
the magnetization of the composite, and F = πa2/d2 (�1) is
the fraction of the structure. Therefore, the permeability can be
given by

μ(ω) = 1 + F
�(ω) − �ext(ω)

�ext(ω)
, (1)

where �ext(ω) and �(ω) are the external flux threading and
the total flux trapped in the SQUID loop at the microwave
field frequency ω, i.e. �ext(ω) = μ0 Hx(ω)πa2, �(ω) =
μ0(Hx(ω)+ H ′(ω))πa2. The basic equations of the dynamics
of SQUIDs are

Q

C
= d

dt
�, (2)

� = �ext − L I , (3)

I = Ic sin

(
2π

�

�0

)
+ d

dt
Q + Q

C

1

R
. (4)

If we consider the quantum mechanics of the current
in the SQUID, �, Q and I in the above equations should
be replaced by the operators �̂, Q̂ and Î , respectively, and
�̂ and Q̂ are connected by the commutation relationship
[Q̂, �̂] = ih̄, which leads to the Heisenberg uncertainty
principle δ�̂δ Q̂ � h̄/2 (δ� ≡ √〈(� − 〈�〉)2〉, δQ ≡√〈(Q − 〈Q〉)2〉). We assume all external fields are classical,
i.e. �ext is a number (not an operator). In [7] we have
studied the case where both �̂ and Q̂ fluctuate and shown
that the quantum transitions between the eigenstates of energy
can lead to negative permeability. Here we study the classical
limit case where the phase fluctuations δ�̂ can be neglected
but the charge fluctuation δ Q̂ is pronounced. Before we use
the classical equations (2), (3) and (4), we must know how
small δ�̂ should be. In order to evaluate δ�̂, we expand
sin(2π �

�0
) in equation (4) to second order and take its mean

value, which yields 〈sin(2π �
�0

)〉 ≈ sin(2π
〈�〉
�0

) − 1
2 〈(� −

〈�〉)2〉( 2π
�0

)2 sin(
2π〈�〉

�0
), where 〈� − 〈�〉〉 = 0 has been used

and 〈· · ·〉 denotes calculating the mean value with quantum
mechanics. In order to go back to classical mechanics we must
require that in the above equation the second term is negligible
comparing with the first term, i.e. 1

2 〈(� − 〈�〉)2〉( 2π
�0

)2 � 1,

i.e. δ�
�0

� 1√
2π

. This is the condition of the classical limit. In
this limit, the classical equations (2), (3) and (4) are valid, but
the symbols �, Q and I in them should be regarded as 〈�̂〉,

Figure 2. Resonance angular frequency of SQUIDs in units of the
resonance angular frequency of LC oscillation versus the external
bias DC flux. Black dashed curve for β = 0, blue solid for β = 0.05,
green solid for β = 0.14, black solid for β = 1/2π ≈ 0.1592
(critical value), red solid for β = 0.1910.

〈Q̂〉 and 〈 Î 〉, respectively. On the other hand, the quantum
fluctuation of the flux (δ�) can be neglected.

From equations (2), (3) and (4), it is easy to obtain the
equation for time evolution of the flux as follows:

d2x

dτ 2
+ γ

dx

dτ
+ β sin(2πx) + x = y, (5)

where x is the normalized total flux defined by x = �/�0, y
is the normalized external flux defined by y = �ext/�0, τ is
the normalized time defined by τ = ωLCt with ω2

LC = 1
LC , γ is

the relaxation parameter defined by γ = ωLC L/R and β is the
parameter of a Josephson junction defined by β = βL/2π =
L Ic/�0, where L is the ring inductance, Ic is the critical
current of the junction, C is the capacitance of the junction
and �0(= h/2e) is the flux quantum. For example, a realistic
SQUID system can be described using the parameters as in the
work of Zhou et al [11], where L = 100 pH, C = 40 fF
and Ic = 3.95 μA, leading to ωLC = 5 × 1011 rad s−1 and
β = 1.2/2π .

If the SQUID is in the DC magnetic bias field but the probe
microwave field is absent, then y = y0 ≡ �DC

ext /�0 with �DC
ext

being the external DC bias flux. From equation (5) we can see
that the steady-state solution of the total flux x0 should obey
the following equation:

β sin(2πx0) + x0 = y0. (6)

The ‘steady state’ will be stable to a infinitely small disturbance
only if dy0

dx0
> 0, i.e.

1 + 2πβ cos(2πx0) > 0. (7)

In contrast, if dy0

dx0
< 0, the solution will be unstable. For

the bistability case, dy0

dx0
= 0 must have solutions, which yield

β > 1/2π (the condition of bistability). In this case when y0

increases from 0 to ∞, the value of x0 will jump from the lower
branch to the higher branch at a critical point, while when y0

decreases from ∞ to 0, it will jump from the higher branch
to the lower branch at another critical point (see the inset of
figure 4).
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Figure 3. Real part (solid curve) and imaginary part (dashed curve)
of the permeability (μ) versus the probe angular frequency ω for the
sub-hysteresis case where F = 0.03 and γ = 0.003. The black curve
is for β = 0 and y0 = 1.0, the red curve for β = 0.14 and y0 = 1.0,
and the cyan curve for β = 0.14 and y0 = 0.4874.

Now we consider the case that, after the SQUID reaches
a stable steady state, the microwave probe field is switched
on. We assume the probe field is linearly polarized with the
magnetic field perpendicular to the plane of the SQUID ring.
Hence the normalized external magnetic flux y can be written
as y = y0 + y1, where y1 = �

probe
ext /�0 with �

probe
ext being the

external probe field threading the SQUID loop. Accordingly,
the normalized total magnetic flux x can be written as x =
x0 + x1,where x0 = �DC/�0 and x1 = �probe/�0, with
�DC being the total DC flux and �probe being the total AC flux
threading the SQUID loop. Furthermore, we assume that the
probe field is very weak so that 2πx1 � 1. In this case the
time evolution of the magnetic flux of the probe field can be
described by the following equation:

d2x1

dτ 2
+ γ

dx1

dτ
+ 2πβ cos(2πx0)x1 + x1 = y1. (8)

For a probe field of angular frequency ω, y1 can be written
as y1 = yae−iωτ +c.c with ya being the amplitude of the flux of
the external field. It is easy to obtain the steady-state solution
of equation (8) as x1 = xae−iωτ + c.c with

xa = −ya

ω2 + iωγ − ω2
r

, (9)

where ωr is defined by

ωr = √
1 + 2πβ cos(2πx0). (10)

If the stable condition (i.e. equation (7)) is met, then ωr must
be a real number, and can be considered as the normalized
resonance angular frequency of the SQUID (in units of ωLC).

From equations (9) and (10) we can see that ωr is
dependent on x0. The relation between ωr and y0 can be
obtained from equations (6) and (10), which is shown in
figure 2. If β < 1/2π , ωr can be continuously and smoothly
detuned by y0. In contrast, if β > 1/2π , ωr will jump from
0 to a larger value (the bistability on ωr occurs). It should be
noted that, though the case of ωr = 0 occurs in figure 2, it
cannot be obtained in reality because in this case the system is

Figure 4. Real part (solid curve) and imaginary part (dashed curve)
of the permeability versus y0 for the hysteresis case where
β = 0.1910. The inset is x0 versus y0 which shows the bistable
behavior on the input–output relationship of the DC field (without
the microwave field). The black curves are for the cases where y0

varies from small to large, while the red curves for the cases where
y0 varies from large to small. Other parameters are F = 0.03,
γ = 0.003 and ω = 0.6 (in units of ωLC (ωLC = 1/

√
LC)).

on the brink of instability. However, it can be concluded that
in reality ωr � 1 is possible. On the other hand, the maximum
of ωr is

√
1 + 2πβ , which is much larger than 1. So it can be

concluded that the resonance frequency of SQUID can be tuned
to be much lower or much higher than that of LC oscillations.

The permeability μ can be derived as follows:

μ = 1 − F − F

ω2 + iωγ − ω2
r

. (11)

If we assume γ is small enough so that γ 2 < F (e.g. if we take
F = 0.03, γ should be smaller than 0.1732), it can be derived
from the above equation that Re(μ) < 0 occurs only if

γ 2 < F + 2ω2
r − 2ωr

√
ω2

r + F . (12)

This is a necessary condition for negative permeability. The
frequency range of Re(μ) < 0 can be obtained as

ω− < ω < ω+, (13)

where

ω± =
√

F + 2ω2
r − γ 2 ± √

(F − γ 2)2 − 4ω2
r γ

2

2
. (14)

It can be seen from the above two equations that, when
ωr → 0, ω− → 0. It should be noted that, because ωr = 0
is impossible in reality, Re(μ) < 0 for zero frequency is
impossible. However, negative permeability for extremely low
frequency (much lower than the LC oscillation frequency) is
possible.

In the sub-hysteresis case the angular-frequency spectra
of permeability μ(ω) has a Lorentz profile (which is shown in
figure 3) and can be tuned smoothly by y0. Negative Re(μ)

occurs when ω is close to ωr. In the hysteresis case, however,
both the response of ωr and μ to y0 exhibit bistability (which
is shown in figure 4). The high sensitivity of the response of
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the permeability to the bias field has potential applications in
ultra-sensitive detectors.

Let us discuss the condition of the linear approximation.
For simplicity we have assumed that the EM probe field is
weak enough so that the permeability is a well-defined linear
permeability. This condition can be easy to satisfy in the off-
resonance case because the current induced by the EM field is
very small. In the exact resonance case (ω = ωr), however,
the linear condition 2πxa � 1 requires that the applied field
must satisfy the condition ya � γωr/2π . In practice it
may be difficult to satisfy because γ is very small. In other
words, in practice, the response of the metamaterial to a sharp
resonant probe field may be nonlinear. However, fortunately,
the negative permeability Re(μ) < 0 does not require sharp
resonance. From equations (1) and (9) we can estimate that
Re(μ) < 0 requires ya ≈ Fxa. So the linear condition
2πxa � 1 can be rewritten as ya � F/(2π). For example,
if we take F = 0.03, then the linear condition is ya � 0.005.
So we can take ya = 0.0005 ∼ 0.001 (in units of the flux
quantum �0), which is possible in practice.

The above-mentioned discussions are for the case where
the probe field is in the weak-field limit (2πx1 � 1). As
a complement, let us have a brief discussion on the case of
strong-field limit where x1 � β . In this case, according to
equation (5), the contribution of the Josephson junction can be
neglected. Hence the permeability can be given by

μ = 1 − F − F

ω2 + iωγ − 1
. (15)

We emphasize that the permeability in this case is also linear,
i.e. independent of y0, even if 2πβ > 1. But it is different from
the weak-field case because here the permeability is insensitive
to the DC bias field and, similar to linear SRR, the SQUID has
a constant resonance frequency (ωr = 1). Hence the tunable
properties of the SQUID metamaterial disappear for a strong
probe field. It is easy to obtain from equation (15) that the
necessary condition for Re(μ) < 0 is γ < F/

√
2. In the case

of γ � F � 1, the angular frequency range for Re(μ) < 0 is
1 < ω < 1√

1−F
.

It should be noted that, similar to linear SRR
metamaterials, the permeability discussed in this paper is a
well-defined linear complex permeability which is independent
of the amplitude of the microwave field. This definition of
permeability is different from that in [8], where its physical
meaning is much more complicated and nonexplicit due to the

nonlinearity, and does not seem appropriate for the case of
being close to resonance.

In conclusion, we have obtained the spectra of the
linear permeability of SQUID metamaterials and present a
necessary condition for negative permeability which is given
by equation (12). We find negative permeability occurs near
the resonance angular frequency ωr which can be tuned over a
large range (0 < ωr <

√
1 + 2πβ) via a DC bias magnetic

field. Negative permeability at extremely low frequency
(much lower than the resonance frequency of LC oscillation)
is possible. In the case of hysteresis (β > 1/2π ), the
response of the resonance frequency and permeability to the
DC bias field is hysteretic and bistable. These conclusions
may be essential for future experimental research on SQUID
metamaterials. The bistable SQUID metamaterials may have
potential applications in extremely sensitive detectors due
to their high sensitivity to magnetic fields. In addition,
the SQUID metamaterials have also potential applications in
cloaking devices due to the tunable permeability, especially for
cloaking devices at extremely low frequency.
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